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ABSTRACT ‘

The hydrostatics of a fluid between parallel plates at low but

positive Bond numbers is re-examined as a preliminary to dynamic
calculations. The results of this study differ from those of a previous

study by Reynolds. It is believed that the results of Reynolds are in
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INTRODUCTION

When the valves in the propellant lines of a missile in flight are
suddenly closed, there are oscillations of fluid flow at the propellant tank
outlets. When, in addition, ullage rockets are operating, the effective
acceleration of gravity (for the fluid in the tanks) is very low but positive
and is directed along the axes of symmetry of the tanks. It is the purpose
of this project to investigate the behavior of the liquid-vapor (plus gas)

interfaces in the propellant tanks under these conditions.

For the propellants under consideration (specifically, liquid
hydrogen and liquid oxygen), the contact angles are small. Under the
conditions of low acceleration (small Bond number) and small contact
angle, the deflections from any constant height and the slopes of the
ilyuia-gas interface will be moderate to large over a fair portion of the
tank. Then those assumptions of the usual small perturbation theory which
involve small deflections of this surface from a constant height and small

slopes of that surface are invalid.

For the present problem it is appropriate to assume perturbations
about a static equilibrium surface. It is then necessary that (1) the static
equilibrium surface be known with considerable accuracy and that (2) dy-

namic variations from that surface be amenable to analysis.

Propellant tanks are usually circular cylinders, and a final aim of
analysis must be to solve the problem in which the static case is axially
symmetric. However, for the moment, the dynamic two-dimensional
(three-dimensional, including time) problem seems difficult enough to
handle; and efforts have been confined to solving that problem. The static

solution required is therefore the two-dimensional one.

Treatment of the two-dimensional static problem is not new. The
problem is reported by Otto! to have been treated by both Reynolds2 and

Benedikt> for the case of vertical walls. Some justification of the present



paper, which deals in detail with the same problem, is therefore required.
The justifications are these:

® Efforts to obtain the original papers of Reynolds and Benedikt
were unsuccessful.

® What is needed here are detailed calculations for particular
Bond numbers and for particular low contact angles. It could
not be expected that either the needed accuracy was attained or
the particular contact angles were treated in the original papers.

® It is shown that the results of Reynolds, as reported by Otto,

are at variance with those to be obtained through the present
analysis. It is believed that Reynolds' results are in error.

This paper starts with the governing equations, develops the
differential equation for the vertical displacement of the surface, integrates
that equation for positive Bond numbers and for small contact angles, treats
the special case of Bond number zero, calculates results for a particular

Bond number and contact angle, and, finally, questions the results of

Reynolds.



STATEMENT OF THE PROBLEM

Consider two plane parallel walls a distance w apart, as in
Figure 1, which extend to infinity (or to a very long distance compared
to w) both out of and into the plane of the figure. In the plane of the figure
choose a horizontal or x-axis perpendicular to the walls at an arbitrary
vertical location and a y-axis perpendicular to the x-axis and half-way
between the walls™. Let the effective acceleration of gravity, g, act in
the minus y-direction. Let a fluid fill the lower part of the region to a
mean depth, hy,. Consider the density of the fluid, p, its surface tension,
T, the pressure of the gas (plus vapor) above the liquid, P, the effective
acceleration of gravity, and the contact angle of the liquid at the wall, 6,
to be constant. Find the location of the surface of the liquid as a function

of x.

*The latter choice is made only because of the symmetry of the problem
but is not essential in obtaining the solution.
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Figure 1. Fluid Between Two Parallel Plane Walls Which are Also
Parallel to the Lffective Acceleration of Gravity



ANALYSIS

PRESSURE IN THE LIQUID AS A FUNCTION OF DEPTH

The pressure, p, at any point (x, y) in the fluid is given by
ptpgy=P+A (1)

where A is a constant to be determined. Let the equation of the surface

be y = h(x) and the pressure at the surface be pg. Then
pstpgh=P+A . (2)

The pressure at the surface is related to the surface tension, T, by
p = P - —E’I{"_ (3a')

where R is the radius of curvature of the surface, or by

d%h/dx*
pg =P -T 3/ (3b)
[1 + (an/ax)?] @
The elimination of pg from Equations 2 and 3b yields
T (d°h/dx’
b Xg/ =pgh-A=pg(h-7) (4)
[1 + (dh/dx)*] "?
where
A=pgT . (5)

T is a mathematical (not physical) value of h for which d*h/dx? = 0.
(h = v will generally be below the surface of the liquid.) Before Equation 4
is integrated, T will be obtained. The pressure at any point in the liquid

will then be known.

The terms of Equation 4 are integrated with respect to x from

wall to wall. The result is



W2 (@thjax?)ax dh/dx Wiz LY Wiz
232 - 2,2 —TT— (h-7)dx
-w/2 [1 + (dh/dx)%] [1+ (dh/ax)®] %) /2 -w/2
w/2
= -F:r—g[g h(x)dx-Tw:l
~-w/2
so that
;=X 5 h(x) dx - —— dh/dx ¥ (6)
Y \Yw/2 PE {1+ (ab/dx)*] "?) w2

Let 6 be the contact angle of the liquid at the wall. Then

W
=cot O f ==
co or x =3

dx
dh w
dx—--coté)forx—-2
so that
w/2
dh/dx v = 2 cos ©
[1+ (dh/dx)*] " )_w/2
Now
w/2
S h(x) dx
-w/2

is the cross-sectional area of the fluid as measured from the x-axis.
It is a function of the armount of fluid in the tank. Let hy, be the mean

value of h. Then

hyy _év_ 3 h(x) dx (7)



and Equation 5 can be written

T
o €os 6 . (8)

Then

and Equation 1 becomes
2T
ptpgy=FP+tpoghy - cos® (9)

so that the pressure is calculable for any point in the fluid. Observe that
this equation holds no matter where the origin of coordinates is located

since its location affects y and hm similarly.

INTEGRATION OF THE DIFFERENTIAL EQUATION FOR BOND

NUMBERS GREATER THAN ZERO

Equation 4 will now be integrated. LetZ =h - t. Then Equation 4

becomes

d°7/ dx?
[1+ (afi/ax)?] /2

_Pg
=

This can be integrated once after multiplying both sides by d%/dx. The

result is

-1 _pg
— =
[t + (dn/dx)?) o 2T

(r% - c)

where c is the constant of integration. Let /iy be the value of # where
dZ/dx = 0 (at the middle of the tank). (The value of Z, is at present

unknown. )} Then



| and
|
1 P8
o =15 7 -Rg) (10)
[1 + (dk/dx)?]"?
or
/7
dh _ -+ oax
1 Fl
-1
[1-(pg/2T)(i? - B2)]
so that
h X
n
1’ d - = %+ dx = * x
i { 1 115
| Fo “[1-(pg/2T)(? - 53] 0
‘ 1 L
: Now let s = (pg/2T)* I, s, = (pg/2T)*H,, then
|
‘ s
1
(ZT 2 ds
_— =+ x
. PE r 1 1z
-1
JL 2 2,12
SO [l_ (S = SO)]
) or s

) (B%)é . =% = (11)

By = . (12)



On making the successive substitutions,

t=1+sl-8g°

sina =t
T

¢_2-a

24 = ¢

while retaining s in the upper limit of integration and expressing constants

in terms of sy, this becomes

[ (w/4)+ (1/2) sin'1(1+s(z)-sz)
1 s z 1 3
+ X 2 (1+= 1 - ——— sin? ¢) dy
i w/2
(w/4) + (1/2) sin™' (1 +s2 - s?)
l+sé dy
S50 ( 1 .2 2
(1 T 1 - ——— sin -4,)
2 2
2 1+sg5/2 ]
1 1+ s o i 1 1 -
= 1 20 l{K L—-—Z—EJ-F[—-—Z——;% Esin1(1+s?‘o-sz)]}
(By)? (1+sg5/2)2 (1+s5/2)2 (1+s5/2)2
s3\ ) 1 1 1
-2 <l+—29) {h. '[———-LJ - E(——————l—- »%+% sin™! (1+sé-sz)J}
L1+ s5/2)? L(1+s;’5/2)?
(13)
where



is the complete elliptic integral of the first kind,
1 | |
F [————-———1,1;- +-£ sin l(l + sé - s?)
(1 + sé/Z)2 d

is the elliptic integral of the first kind,
E r 1 ]
1
]'(1 + sé/Z)z

is the complete elliptic integral of the second kind, and

I

E‘L 1*%+%sin~l(l+sé-sz)—l
(1+s2/2)2 -
is the elliptic integral of the second kind.

THE RANGE OF VALUES OF s

The dimensionless variable s is related to the physical variable

h through
1 1 1
3 (1%.)2 i - (ng ko (Eg)a (2=
ST \2T 2 ) w 2 w
Box: [h - b
0)* | - Om 2
_<2)L - +Bocose]
: B B h-nh
2 02( - m
_(BO‘) cos 0+ (2 (—2) (1)
or
1
h - hyy, 2\ 2
. m_ & - . 15
- <Bo) s B, cos O {15)

It follows that the range of values of s also determines the range of values

of h (except at zero Bond number).

10



An equation previously obtained was

1 _ 1 _P8 2 .2
[1 R (dﬁ/dx)z]% =1 T (R ﬁo) (10)

which can be written

1
T =1+s5-5s" . (16)
[1+ (dar/ax)?]z
The maximum values of [d7i/dx| = |dh/dx] and of s occur at the wall

[x =@ (1/2) w], where |dh/dx| = cot 8. Call the corresponding value of
s, sy (for s upper). Then at the wall

L ; = s8in 6
[1+ (d7/dx)*]2
and slzl=l+sf)-sin6 (17)
1
Substitution of s = s{’:1 at 3—:;/- =+ 3 into Equation 13 yields

N~

(w/4)+ (08/2)
- 1
1 .\
= 2 {1+ — ]l - —— d
" (Bo)% (+ f ( l+S/2 sin 4] a4
(w/4) + (8/2)
1+so
s 2
(1+ s /2 sin’ )

-

0
+2

| BN

)

NE

1+ 1
sl by {K{_L‘—}F[_‘“—
(Bo)? \(l+sd/2)? (1+sd/2)2 (1+s/2)?

1

;L

So¥ 1 1 T 9
-2(1+-—2){E[——————%}-E[ 4 2

(1+ s/2) (l+sé/2)%

} (18)

-
|
dJ

11



2

This equation determines sé , and Equation 17 then determines S4-

In order to be able to convert s back to a physical coordinate (h),
it remains to determine the signs of s, and s. Equation 13 has significance

2 > 2

only for s° 2 s, or for

sz-sé=(s-so)(s+s0)20 . (19)

Now from Equation 14 one obtains

1 1
2 2 B2 h_-h
o (2 cno () Pt
1
2

r
2

For 6 < it follows that physically 2 2 0 so that

i
o

s - 85 2
Then, from Equation 19,
s+ 8520

and from the above two equations

sz 0
soio
and
S ;SOi 0
m o,
For 6>E it follows that
h - hg <o
w
12



w
§
2]
o}
1
o

S+So—_<—0
s =0
So =0

and

CALCULATION PROCEDURE FOR POSITIVE BOND NUMBERS AND FOR
SMALL CONTACT ANGLES

A procedure for determining the shape of the interface can now be

given. The steps in this procedure are:

(1) Calculate the Bond number from

(2) Determine s,, using B, and the contact angle, 6, from

Equation 18.
(3) Calculate s from Equation 17.

(4) Select a number of values of s such that s; = s = s,;. Calculate
h - hpy

using Equation 15 and of =
W

the corresponding values of

using Equation 13.

h-hm

(5) Pilot versus — .
w

The second of the above steps requires special consideration. The
value of s (or of sé) must be found by iteration; and, in order to minimize
the labor involved, it is desirable to specify both maximum and minimum

values of So-

The proper minimum value of s, appears to be sy = 0. However,

at s; = O the integral sum on the right side of Equation 18 becomes infinite

13



(or that equation cannot possibly be satisfied unless the Bond number is
also infinite). For finite Bond numbers, then, the substitution sy = 0

yields an infinite value for the right side of the equation.

For the problems of present interest 6 is small, and an upper limit
ho-h
for sy will be found primarily for such problems. For 6 < % , == < 0,
w
™

and it follows from Equation 20 that for 6 < >

1
2 \¢ . .
('B—) is then the required upper bound. One may use it as a first guess
o

in the iteration process for calculating sg.
h-h, %

A FORTRAN IV computer program for calculating R and —
w

for small contact angles has been written by Allen G. Collier of the
Scientific Programming Section of Brown Engineering Company, Inc. His
main program is given in Appendix A while his subroutine for calculating
the elliptic integrals is given in Appendix B. His elliptic integral sub-

routine utilized the method of Fettis and Cashin4.

A SPECIAL CASE: BOND NUMBER ZERO

In this section it is demonstrated that at Bond number zero the
surface of the fluid is that of a right circular cylinder. The equation of

the surface is obtained.

From Equations 4 and 8 it follows that

pg(h-T)

i)

I
R

2T
h-hy + cos 6) s
Pg( mT e w

14



where R is the local radius of curvature of the surface, or that

h-h
w m
R-ZcosG+Bo( - )

At Bond number zero, then, it follows that
R = % sec 8 , (21)

that the radius of curvature of the surface is a constant, or that in the h-x
plane the cross-section of the surface is circular with the radius as given
above. (This equation is expected since at Bond number zero, say g = 0,
the pressure must be the same at all points in the fluid, which means that
the radius of curvature of the surface must be constant, and since the fluid
must reach the wall at the contact angle. This same type of result is found
by LiS, who determined that the interface was spherical for a cylindrical

tank, using the principle of minimum energy.)

It remains only to obtain the equation of the surface. The equation

of the surface (see Figure 2) is

[h - (R + hy)]* + x% = R?
from which

h=R+ho—(RZ—x2)% . (22)
h, is assumed to be known

w/2

hy, = XW/Zh(x) dx = = S [:R + h, - (R? xz)ﬂ dx
m = = - -
w -w/2 W oYJiw/2 © J
w/2 1
=R+hg - = / (R - x%)? dx (23)
-w/2

On solving the above two equations for h - hyy;, substituting the value of R

from Equation 21, and integrating, one obtains

15



Figure 2.

M E
A 4

A
N|g

The Surface of the Liquid at Bond Number Zero
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1 1
2 3 2 =
= -1— 5 (—-—W sec? 9 - xz) dx - (l-v— sect 9 - xZY
w 4 4
w/2

2. L
2
tan9+%‘-(—1‘2r--6)sec:29-(sec"‘@-‘Li jJ , (24)

we

fl

w [
2 |

1
2

the equation of the surface.

17



DISCUSSION OF RESULTS

RESULTS FOR ONE BOND NUMBER AND CONTACT ANGLE

The missile of immediate concern is the Saturn V. The fuel (liquid
hydrogen) tank of the S-IV B stage of that missile was selected for study

under low acceleration (corresponding to the use of ullage rockets).

The input data for the calculations are given in Table 1. In the
table the width, w, used was the diameter of the tank. (It is recognized
that the real tank is axially symmetric. ) The elliptic integrals were to be

calculated to an accuracy of 1078,

The output data from the c

g
plotted in Figure 3. Several observations are to be made concerning these

data. These are:

(1) The Bond number calculated is approximately 120. The
Bond number using the half-width of the tank (the radius of
the real tank) as a characteristic length would have been

about 30.

(2) The calculation is limited to a comparatively small number
of values of s. Obviously as many more points could have

been calculated as desired.
(3) The value of s, is clearly the first value of s in the table.

(4) The difference between the final value of x/w and 1/2 indicates

the overall accuracy of the program.

(5) Deflections and slopes of the surface near the wall are not
small even for this rather high Bond number. Slopes of the
surface are appreciable over about twenty percent of the

width of the tank.

18
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TABLE 1

INPUT DATA FOR CALCULATIONS

p:

g:

T =

w=21.7ft
o _ _Om

0 =5 " 180

4.44 1b/ft? (liquid hydrogen)

32.3X107° ft/sec?

rad

175 X107 ¢ X 32, 2 pdl/ft (liquid hydrogen)

ACC = 0.00000001 (Accuracy of elliptic integral)

TABLE 2

OUTPUT DATA FROM CALCULATIONS

Bond Number 0.11947152+03 0= 5°

s x/w h - hpy

W

0. 55026502-02 0. 00000000 -0.15964731-01
0.23094168-01 0.19329778-00 -0.13688658-01
0.40685687-01 0.24597565-00 -0.11412585-01
0.58277206-01 0.27900860-00 -0.91365126-02
0.75868724-01 0.30314618-00 -0.68604399-02
0.93460243-01 0.32216351-00 -0.45843671-02
0.11105176+00 0.33784146-00 -0.23082944-02
0.21660087-00 0. 39780985-00 0.11348142-01
0.32214998-00 0.43215343-00 0.25004579-01
0.42769910-00 0.45528390-00 0. 38661015-01
0.53324821-00 0.47180017-00 0.52317452-01
0.63879732-00 0.48372990-00 0.65973888-01
0. 74434643-00 0.49210297-00 0.78630324-01
0. 84989554-00 0.49746116-00 0.93286761-01
0. 955-14466-00 0.50003424-00 0.10694320+00

20



THE RESULTS OF REYNOLDS ARE QUESTIONED

It is reported by Otto1 that Reynolds2 has attacked the present
problem, and Otto reports Reynolds' results as a plot of vertical dis-
placement versus horizontal distance for various Bond numbers at fixed
contact angle (Figure 5 of Reference 1). Unfortunately efforts to obtain
Reynolds' paper were unsuccessful so that comments on his analysis

cannot be made.

The result obtained in the preceding section for the displacement
of the liquid at the walls appeared to be too large to fit Reynolds' results.
(Reynolds' characteristic length is half of that used in this paper.) As a
result, some method of checking the accuracy of his results was sought.
The method used was to establish a lower limit for hy - hp, (the displace-
ment at the wall) for small values of 6 and to compare the results obtained
at Reynolds' Bond numbers and at one of his two contact angles with his

deflections (at the wall).

From Equations 14 and 17 it follows that for 6 < —Tzr
2 1 2 ';' Bo _é' hy -hm
- : 2 - [ & ZQN & o n
sy =(1+sg - sin 6) _(Bo) cos6+(2)

or that

hu - hm 2 % 2 .
- (E;) (1 + s, -sin 8)
So is a function of both Bond number and contact angle. For small con-
tact angles it is small compared to unity for moderate Bond numbers,

approaches zero as the Bond number increases, and approaches infinity

as the Bond number decreases towards zero. The inequality

hy -hm 2 é i 2
———————— > — - 1 2 L =a =
(B > (1 - sin 0) B cos 8 = F(B,, 6) (25)

21



can then be expected to be close to an equality except at low Bond numbers

(for low contact angles).

It remains to express this inequality in Reynolds' notation and to
compare the values calculated using it with the corresponding values of

Reynolds. Reynolds uses the variables

pgL’ (= 2
T4

Y (= h - hy), L(=3"-),andB= =

2

Let Yy = hy - h, then Equation 25, when expressed in terms of these
variables, is

1

Y 2 1
—L‘f— > (3‘-)2 (1 - sin 0)F - S22 ® . F (B,8) . (26)

B B

Reynolds plots Y/L versus x/L for 6 = 10° for B = 0, 0.58, 2.9,
5.6, and w. Of his curves, that for Bond number zero is clearly a circle;
and that for Bond number infinity is clearly a horizontal line, Of the re-
maining three, Table 3, in which F(B, 6) and Reynolds' deflections at the
walls are compared, indicates that for the two Bond numbers for which
Equation 26 yields positive results, namely for Bond numbers 2.9 and 5. 6,
his results are too low and are therefore questionable unless there is an

error in the present analysis.

TABLE 3

COMPARISON BETWEEN F(B, 6) AND
REYNOLDS' RESULTS AT THE WALLS

6=10°
B F(B, 0) Yu/L (Reynolds)
0.58 -0. 0097 > 0.44
2.9 +0.4154 < 0.38
5.6 +0. 3674 < 0.17

22



CONCLUSIONS

The present report results from a need for accuracy in static cal-
culations (for low contact angles and Bond numbers) in order that the cal-
culated static surfaces may serve as the unperturbed surfaces for dynamic
calculations. Results are obtained for one particular Bond number and

contact angle.

It is believed that the accuracy used in calculating the elliptic
integrals involved is sufficient. It is shown that for one contact angle and
for at least two Bond numbers the displacements calculated (at the walls)
will be larger than those obtained by Reynolds. Reynolds' results are

believed to be in error.
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APPENDIX A

m

FORTRAN IV PROGRAM FOR 6 < =

2
DESCRIPTION OF PROGRAM
pgw?
1. Bo=—73
2. Solve the following equation for s,
(r/4) + (8/2)
1 1
)2 2
Bo)
=2<1+ )sinz¢:' d
) !/ 2/2 v
w/2
1 . 12 (1 +s2)
- 1-(——2—)sin¢ dy § - ———=—
1+sg/2: (1+s3/2)?
0
(n/4) + (8/2) m/2
dy ] ay
1 1
2 2 1 2
)sin l.pjl 1 - ('———'—2—'—
1 + 50/2 1 + s5/2
0
1
3. Seclect values of s ranging from sp to (1 + s§ - sin 6)2.

25



4. Solve the following equation for each value of sj

(w/4) + (1/2) sin™ ! (1 + 83 - s%)
1
= 1+ 2 in’ T d
(W/i ( ;/ 1+ S /Z)Sln lb 4}

(w/4)+ (1/2) sin™ ' (1 + 82 -

(14 s3) ——— dy

N
[o—)
+
)]
Nio
[V
[
et
1
N
(=]
+
) e
S~
oy
~—
[
(=1
o]
N
€
|
=~

/2

dy -1

[l ) (1 +1sé/2)smz”

—d
o]

5. Solve the following equations for each value of sj

(L) - .(i)é 2 o
W _—Sl Bo BO COS

26

2

s%)

1



DATA SHEETS

Data sheets used contain the following information.

Columns Item Description
1-10 p Density, lb/ft?
11-20 g Acceleration of gravity, ft/sec?
21-30 T Surface tension, pdl/ft or (lb/ft) X 32.3
31-40 w Width of tank, ft
41-50 6 Angle of contact of fuel with side of tank, degree
51-60 ACC Accuracy of elliptic integral

EXPLANATION OF PARAMETERS AND CROSS-REFERENCE BETWEEN
SYMBOLS (INPUT AND OUTPUT)

Algebraic FORTRAN

Symbol Symbol Description
(m/4) + (6/2)
1
A Value of the integral (l - ——— sin? \p)z dy
2
1+8g5/2
0
ACC Accuracy of elliptic integral
/2
3
B Value of the integral (1 - ———— sin® \p) dy
1+s5/2
0
BB Value to be compared with Bond number in

evaluating s

Bo BZ Bond number
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Algebraic
Symbol

FORTRAN
Symbol

DB

DBL

DBU

DS

ETAW

RHO

RK

Desc riEtion

(w/4) + (6/2)

Value of the integral dy ;
1 2 .\
(l - 77 n®
1+
0 %0
w/2
Value of the integral dy

2
(l - ——1-2— sin® q;)
1+sg5/2
Difference between BB and BZ for a particular

value of sq

Difference between BB and BZ for a lower
limit of s,

Difference between BB and BZ for an upper
limit of sq

Increments of s used for calculating (x/w) and

(n/w)

Ratio of the vertical displacement from the
mean of a point to the width of the tank (n/w)

Acceleration of gravity
Index item
Control item

Density
1
K of g(l - k% sin® @)% dy

Dimensionless quantity

28



Algebraic FORTRAN
Symbol Symbol Description
SL A lower limit of sg
SuU An upper limit of sq
Sy SU The upper limit of s
So SO The lower limit of s
S1 Used as a next guess in iterating for s,
T T Surface tension
THETA Angle of contact of fluid with side of tank in
degrees
0 THETAR THETA in radians
UL Upper limit of elliptic integral
w w Width of tank
(x/w) Xw Ratio of the lateral displacement of a point
from the middle of the tank to the width of
the tank

FORMAT OF DECK AND OPERATING INSTRUCTIONS

The format of the operating decks is dependent upon the operating

system of the computer being used. This program was written and

checked out on the Univac 1107. However, any computer that accepts

FORTRAN IV could be used. The program was written so that it could

be run under a monitor operating system. The general format of the

operating deck should be:

1.

Control cards
Source or object cards for the main program
Source or object cards for the ELLIP subroutine

Card indicating that data follows

29



5. Data card(s)
6. Blank card

7. Card(s) returning control to monitor system

30




Ly

oJ

94

95

FARTRAL TV PROGRAM LISTILA OrF MALM PROGRAY

NTMENSTON T1AW(101)»S(201) »Xn (101)
FARMAT (AF1u.0N)

FARMAT  (Uhy S

FARVAT (1Sha  BOMD NUMBER Flt.bd)
FARMAT (14 LHE16,.,8)

FORMAT (LW TElo.R)

REAN (Se 1M kHOIG»Towe THETA9ACE
IF (&) 3 0438e7b6

CALL EXIT
THETANRZ N1 703292 % THETA
H72RACHG*x W e n/T

K=1

SQUESURT(F . 70 )

. ZUHL LATHE T a /D

GNTSyU

REZSUAT (o /v 2, 45050 5)

CALL FLULTID (et v 2 s nCCCe )
CALL FLLT™ (2% o0, 022 CCoM0k)
HRZ2,/RKA (=)= (1, +350%S0) #¥Prx ((=D)
WwRITeE (AeSn o SNrA LGy
DRIl =l g4 et

GO Tu (11" i27% Y20 ) ep

HFLLAY =S U]

GOz, o¥S)

K=2

X/ A
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FORTRAN IV PRNOGRAM LISTING OF MAIN PROGRAM

G0 To 110
120 DRL=WR

1T (LRLADPUYS 12501300022
122 S0=.0#50

G0 Tu 100
12% SL=Su

K=3

O To 160

p

G
130 15 (UB*D0U) 1409 LRI 150
1en 0RL=ZVE
SE.=5u
6N Tu 150
150 nnyson
SIS
F1af SISSLHUALY (Li=511) /7 (nl =0t )
PRIV (Bt 51 enni s D!
IF (ARS((S1=5)/511=00C) 1061800170
170 §nzSy
| Gn Ty 100
C1gh SUZSGHET (1, 450%S0=CIN(THETAR))
GPITe (He2njw?
DS= (sU=Su)/L0N,
S11)=¢50
LA 1P 122,101

1lo%  S(I)=S(I-1)+0S
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FORIRAN TV PrOGRAM L1GTING OF MAIM PROGRAY

LQO CONT LMNUE

ONn ZulG I=zZ1,.01

UL SHYHAST(1.4G0+50=S(1)*5 (1)) /.0"349006584

Crlll FLUIP (RK UL »2»ACCaCra)

XWMAT)ZA 24700k (n=FB )= (1 s +G0%C0) kK& (=) ) /SOAIKT(RZ)
Fuﬂ FTYAL(T)ZS (10 %SORT (2, /02) =2 xCNS(THEL TAR) /17
WRITe (Ae20 s (S{I) s XatT) e FTAR(T)Y»1=1y1n])

GNOTL G0

EMD
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APPENDIX B

SUBROUTINE ELLIP
(Computes the Elliptic Integrals)
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1e

lo

1o

1la

8

wr

FORTRAN TV PrAGRAM LISTING OF

SUBRULTINF L1 IP (SSKeTH, TNDIE 1 BKeEK)
P1Z1.5707060
THLI=ZPRIXTH/90,

IF (5SK=1,4) 8,G0 8
IF (TH=9C.) 12»13,12
GMZS (T
AZ(144SH) 7 (1L e=SM)
BEZ LR ALCC ()
FK=5N

N TuL 39

6N TU (14915) 9 IND
R¥z=1,.,E10

E¥Z1a.

G0 Tu 30

SRITE (A 10GL)5SK
pYz1.F1N0

L Tu 39

17 (ib=294) St
SMT1.

CHIZau

un 1o 7

SHEGer (1)
CMECLS T

SU IS HK

R=1.
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1u

11

ce

4

)

20

FORTRAN IV PHOGRAY

T=1.

Gl

S=1,
DISART (1 o =SA xSk ¥ S ¢5)L)
SK2Z5K*SK
SHPZROPT (1 ,=5%2)

GO Tu(1Y» G IND
GTQH(THSHNCI «SK2/ (41 .))
S¥Z{(1e=SKEP)/ (1 ,48%2)
X=Z(1.4SKF)Y /(1 .40)

ShTX S
NESERT (1 o =S kSRASH £GL)
LT (Y g ASKAC xGM) /1
crzZact
STGAC=SF 24T ) /(1 .4Sxi)
TZ() o 4+SKM) 41

RT(1e45K) ¥R

IF (SKe=E) wolig}
IF (St =CN) c2sceari

PATAM (SN /1)

GO Tu 23
FZRI=ATAN L, /C0)
G Tu (28 ) 100

FUZPx5+0

Bz af

LISTING OF SUERVUTTRE FLLIP
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